Где можно наблюдать колебательное движение. Колебания и волны

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн . Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования.

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).

По используемому математическому аппарату

  • Нелинейные колебания

По периодичности

Так, периодические колебания определены следующим образом:

Периодическими функциями называются, как известно, такие функции f (t) {\displaystyle f(t)} , для которых можно указать некоторую величину τ {\displaystyle \tau } , так что f (t + τ) = f (t) {\displaystyle f(t+\tau)=f(t)} при любом значении аргумента t {\displaystyle t} . Андронов и соавт.

По физической природе

  • Механические (звук , вибрация)
  • Электромагнитные (свет , радиоволны , тепловые)
  • Смешанного типа - комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

  • Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса : резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
  • Свободные (или собственные) - это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
  • Автоколебания - колебания, при которых система имеет запас потенциальной энергии , расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.
  • Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

Параметры

Период колебаний T {\displaystyle T\,\!} и частота f {\displaystyle f\,\!} - обратные величины;

T = 1 f {\displaystyle T={\frac {1}{f}}\qquad \,\!} и f = 1 T {\displaystyle f={\frac {1}{T}}\,\!}

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота ω {\displaystyle \omega \,\!} (рад /с, Гц, с −1) , показывающая число колебаний за 2 π {\displaystyle 2\pi } единиц времени:

ω = 2 π T = 2 π f {\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f\,\!}
  • Смещение - отклонение тела от положения равновесия. Обозначение Х, Единица измерения - метр.
  • Фаза колебаний - определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

Краткая история

Гармонические колебания были известны с XVII века.

Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем. Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» - т. е. с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, - что проявляло себя в первую очередь как отклонение от известной формулы Томсона . Тщательное историческое исследование показало , что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл », и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова .

Иностранные исследователи признают тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама , выпустившие в 1937 г. первую книгу , в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин "релаксационные колебания", предложенный ван дер Полем. Они предпочитали термин "разрывные движения", используемый Блонделем , в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов . Этот подход стал зрелым только в контексте теории сингулярных возмущений » .

Краткая характеристика основных типов колебательных систем

Линейные колебания

Важным типом колебаний являются гармонические колебания - колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье , любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают определённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмосферы и поверхности Земли, колебания маятников и т.д.

Если промежутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а промежуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторяется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

(308)

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объясняется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не только периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний (308) величина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется (301), также изменяется по гармоническому закону

(309)

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рис.81.

1.Определение колебательного движения

Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования. Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения. Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.

Механические колебания Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

Волнение моря, качание маятника часов, вибрации корпуса корабля, биение человеческого сердца, звук, радиоволны, свет, переменные токи - все это коле­бания.

В процессе колебаний значения физических величин, опреде­ляющих состояние системы, через равные или неравные проме­жутки времени повторяются. Колебания называются периодическими , если значения изме­няющихся физических величин повторяются через равные проме­жутки времени.

Наименьший промежуток времени Т, черезкото­рый значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называетсяпериодом колебаний.

Число полных колебаний n , совершаемых за единицу времени, называется частотой колебаний этой величины и обозначается через ν . Период и частота колебаний связаны соотноше­нием:

Любое колебание обусловлено тем или иным воздействием на колеблющуюся систему. В зависимости от характера воздействия, вызывающего колебания, различают следующие виды периодических колебаний: свободные, вынужденные, автоколебания, параметри­ческие.

Свободные колебания - это колебания, происходящие в систе­ме, предоставленной самой себе, после выведения ее из состояния устойчивого равновесия (например, колебания груза на пружине).

Вынужденные колебания - это колебания, обусловленные внешним периодическим воздействием (например, электромагнит­ные колебания в антенне телевизора).

Механические колебания

Автоколебания - свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания - это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

х - колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) - это может быть не целое число.

Т - период колебаний Период - время одного полного колебания.

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t - время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Наряду с поступательным и вращательным движением колебательное движение играет большую роль в макро- и микромире.

Различают хаотические и периодические колебания. Периодические колебания характеризуются тем, что через определенные равные промежутки времени колеблющаяся система проходит одни и те же положения. В качестве примера можно привести кардиограмму человека, представляющую собой запись колебаний электрических сигналов сердца (рис. 2.1). На кардиограмме можно выделить период колебаний, т.е. время Т одного полного колебания . Но периодичность не есть исключительная особенность колебаний, ею обладает также и вращательное движение. Наличие положения равновесия является особенностью механического колебательного движения, тогда как вращение характеризуется так называемым безразличным равновесием (хорошо сбалансированное колесо или игорная рулетка, будучи раскрученными, останавливается в любом положении равновероятно). При механических колебаниях в любом положении, кроме положения равновесия, существует сила, стремящаяся вернуть колеблющуюся систему в начальное положение т.е. возвращающая сила, всегда направленная к положению равновесия. Наличие всех трех признаков отличает механическое колебание от остальных видов движения.

Рис. 2.1.

Рассмотрим конкретные примеры механических колебаний.

Зажмем в тиски один конец стальной линейки, а другой, свободный, отведем в сторону и отпустим. Под действием сил упругости линейка будет возвращаться в исходное положение, которое является положением равновесия. Проходя через это положение (которое является положением равновесия), все точки линейки (кроме зажатой части) будут иметь определенную скорость и определенный запас кинетической энергии. По инерции колеблющаяся часть линейки пройдет положение равновесия и будет совершать работу против внутренних сил упругости за счет убыли кинетической энергии. Это приведет к возрастанию потенциальной энергии системы. Когда кинетическая энергия полностью исчерпается, потенциальная энергия достигнет максимума. Сила упругости, действующая на каждую колеблющуюся точку, также достигнет максимума и будет направлена к положению равновесия. Это описано в подразделах 1.2.5 (соотношение (1.58)), 1.4.1, а также в 1.4.4 (см. рис. 1.31) на языке потенциальных кривых. Так будет повторяться до тех пор, пока полная механическая энергия системы не перейдет во внутреннюю энергию (энергию колебаний частиц твердого тела) и не рассеется в окружающее пространство (напомним, что силы сопротивления относятся к диссипативным силам).

Таким образом, в рассматриваемом движении есть повторяемость состояний и есть силы (силы упругости), стремящиеся вернуть систему в положение равновесия. Следовательно, линейка будет совершать колебательное движение.

Другой известный всем пример - колебания маятника. Положение равновесия маятника отвечает низшему положению его центра тяжести (в этом положении потенциальная энергия, обусловленная силами тяжести, минимальна). В отклоненном положении на маятник будет действовать момент силы относительно оси вращения, стремящийся вернуть маятник в положение равновесия. В этом случае также есть все признаки колебательного движения. Понятно, что в отсутствии силы тяжести (в состоянии невесомости) не будут выполнены оговоренные выше условия: в состоянии невесомости отсутствует сила тяжести и возвращающий момент этой силы. И здесь маятник, получив толчок, будет двигаться по окружности, то есть совершать не колебательное, а вращательное движение.

Колебания могут быть не только механическими. Так, например, можно говорить о колебаниях заряда на пластинах конденсатора, соединенного параллельно с катушкой индуктивности (в колебательном контуре), или напряженности электрического поля в конденсаторе. Их изменение со временем описывается уравнением, подобным тому, что определяет механическое смещение от положения равновесия маятника. Ввиду того, что одинаковыми уравнениями можно описывать колебания самых различных физических величин, оказывается очень удобным рассмотрение колебаний безотносительно к тому, какая физическая величина колеблется. Это порождает систему аналогий, в частности, электромеханическую аналогию. Для определенности будем пока рассматривать механические колебания. Рассмотрению подлежат только периодические колебания, при которых значения изменяющихся в процессе колебаний физических величин повторяются через равные промежутки времени.

Величина, обратная периоду Т колебаний (как и времени одного полного оборота при вращении), выражает число полных колебаний, совершаемых в единицу времени, и называется частотой (это просто частота, она измеряется в герцах или с -1)

(при колебаниях так же, как при вращательном движении).

Угловая скорость связывается с введенной соотношением (2.1) частотой v формулой

измеряется в рад/с или с -1 .

Естественно начать анализ колебательных процессов с наиболее простых случаев колебательных систем с одной степенью свободы. Число степеней свободы - это число независимых переменных, необходимых для полного определения положения в пространстве всех частей данной системы . Если, например, колебания маятника (груз на нити и др.) ограничены плоскостью, в которой только и может перемещаться маятник, и если нить маятника нерастяжима, то достаточно задать только один угол отклонения нити от вертикали или только величину смещения от положения равновесия - для груза, колеблющегося вдоль одного направления на пружине, чтобы полностью определить его положение. В этом случае мы говорим, что рассматриваемая система обладает одной степенью свободы. Тот же маятник, если он может занимать любое положение на поверхности сферы, на которой лежит траектория его движения, обладает двумя степенями свободы. Возможны и трехмерные колебания, как это имеет место, например, при тепловых колебаниях атомов кристаллической решетки (см. подраздел 10.3). Для анализа процесса в реальной физической системе мы выбираем его модель, заранее ограничив исследование рядом условий.

  • Здесь и далее период колебаний будет обозначаться той же буквой, что и кинетическаяэнергия - Т (не путать!).
  • В главе 4 «Молекулярная физика» будет дано и другое определение числа степеней свободы.
Поделитесь с друзьями или сохраните для себя:

Загрузка...