Колебательным движением называют движение. Виды колебаний в физике и их характеристика

Колебания – один из самых распространенных процессов в природе и технике.

Колеблются крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой.

Землетрясения – колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д.

Смена бодрствования и сна, труда и отдыха, зимы и лета... Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же уравнениями.

Свободными колебаниями называются колебания, происходящие благодаря начальному запасу энергии, приданному колеблющемуся телу.

Чтобы тело совершало свободные колебания, необходимо вывести его из состояния равновесия.

НАДО ЗНАТЬ

Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). (Полагают, что соотношение между длиной маятника и временем каждого качания открыл Галлилей. Однажды в церкви он наблюдал, как качалась огромная люстра, и засекал время по своему пульсу. Позже он открыл, что время, за которое происходит один взмах, зависит от длины маятника - время наполовину уменьшается, если укоротить маятник на три четверти.).
Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника.

Большой вклад в изучение колебаний внесли многие ученые: английские – У. Томсон (лорд Кельвин) и Дж. Рэлей, русские – А.С. Попов и П.Н. Лебедев и другие


Красным цветом изображается вектор силы тяжести, синим - силы реакции, желтым - силы сопротивления, бордовым - равнодействующей силы. Для остановки маятника нажать кнопку "Стоп" в окне "Управление" или щелкнуть кнопкой мыши внутри главного окна программы. Для продолжения движения действия повторить.

Дальнейшие колебания нитяного маятника, выведенного из состояния равновесия, происходят
под действием результирующей силы, которая является суммой двух векторов: силы тяжести
и силы упругости.
Результирующая сила в данном случае называется возвращающей силой.


МАЯТНИК ФУКО В ПАРИЖСКОМ ПАНТЕОНЕ

Что доказал Жан Фуко?

Маятник Фуко служит для демонстрации вращения Земли вокруг своей оси. На длинном тросе подвешен тяжелый шар. Он качается взад-вперед над круглой площадкой с делениями.
Через какое-то время зрителям начинает казаться, что маятник качается уже над другими делениями. Кажется, что маятник повернулся, но это не так. Это повернулся вместе с Землей сам круг!

Для всех факт вращения Земли очевиден хотя бы потому, что день сменяет ночь, то есть за 24 часа совершается один полный оборот планеты вокруг своей оси. Вращение Земли можно доказать многими физическими опытами. Самым знаменитым из них был опыт, проведенный Жаном Бернаром Леоном Фуко в 1851 году в парижском Пантеоне в присутствии императора Наполеона. Под куполом здания физик подвесил металлический шар массой 28 кг на стальной проволоке длиной 67 м. Отличительной особенностью этого маятника было то, что он мог свободно качаться во всех направлениях. Под ним было сделано ограждение с радиусом 6 м, внутри которого насыпали песок, чьей поверхности касалось острие маятника. После того как маятник привели в движение, стало очевидно, что плоскость качания поворачивается относительно пола по часовой стрелке. Это следовало из того, что при каждом следующем качании острие маятника делало отметку на 3 мм дальше предыдущего. Это отклонение и объясняет то, что Земля совершает вращение вокруг своей оси.

В 1887 году принцип действия маятника был продемонстрирован и в и, в Исаакиевском соборе Петербурга. Хотя сегодня увидеть его нельзя, так как теперь он хранится в фонде музея-памятника. Сделано это было для того, чтобы восстановить первоначальную внутреннюю архитектуру собора.


СДЕЛАЙ МОДЕЛЬ МАЯТНИКА ФУКО САМ


Переверни табуретку вверх ножками и положи на концы её ножек (по диагонали) какую-нибудь рейку. А к середине её подвесь небольшой груз (например, гайку)ни нити. Заставь его качаться так, чтобы плоскость качания проходила между ножек табуретки. Теперь медленно поворачивай табуретку вокруг её вертикальной оси. Тебе станет заметно, что маятник качается уже в другом направлении. На самом деле он качается всё также, а изменение произошло из-за поворота самой табуретки, которая в этом опыте играет роль Земли.


КРУТИЛЬНЫЙ МАЯТНИК

Это маятник Максвелла, он позволяет выявить ряд интересных закономерностей движения твердого тела. К диску, насаженному на ось, привязаны нити. Если закрутить нить вокруг оси, диск поднимется. Теперь отпускаем маятник, и он начинает совершать периодическое движение: диск опускается, нить раскручивается. Дойдя до нижней точки, по инерции диск продолжает вращаться, но теперь уже закручивает нить и поднимается вверх.

Обычно крутильный маятник применяется в механических наручных часах. Колесико-балансир под действием пружины вращается то в одну, то в другую сторону. Его равномерные движения обеспечивают точность хода часов.


СДЕЛАЙ КРУТИЛЬНЫЙ МАЯТНИК САМ


Вырежьте из плотного картона небольшой круг диаметром 6 – 8 см. На одной стороне кружка нарисуйте открытую тетрадь, а на другой стороне – цифру «5». С двух сторон круга проделайте иголкой 4 отверстия и вставьте 2 прочные нити. Закрепите их, чтобы они не выскакивали, узелками. Далее стоит лишь закрутить круг на 20 – 30 оборотов и натянуть нити в стороны. В результате вращения вы увидите картинку « 5 в моей тетрадке».
Приятно?


Ртутное сердце

Небольшая капля – лужица ртути, поверхности которой в её центре касается железная проволока – игла, залита слабым водяным раствором соляной кислоты, в котором растворена соль двухромовокислого калия.. ртуть в растворе соляной кислоты получает электрический заряд и поверхностное натяжение на границе cоприкасающихся поверхностей понижается. При соприкосновении иглы с поверхностью ртути заряд уменьшается и, следовательно, меняется поверхностное натяжение. При этом капля обретает более сферическую форму. Макушка капли наползает на иглу, а затем под действием силы тяжести соскакивает с неё. Внешне явление производит впечатление вздрагивания ртути. Этот первый импульс дает толчок колебаниям, капля раскачивается и «сердце» начинает пульсировать. Ртутное «сердце» - не вечный двигатель! Со временем длина иглы уменьшается, и её вновь приходится устанавливать в соприкосновение с поверхностью ртути.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

С одним из видов неравномерного движения - равноускоренным - вы уже знакомы.

Рассмотрим ещё один вид неравномерного движения - колебательное.

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, вагона на рессорах и многих других тел.

На рисунке 52 изображены тела, которые могут совершать колебательные движения, если их вывести из положения равновесия (т. е. отклонить или сместить от линии ОО").

Рис. 52. Примеры тел, совершающих колебательные движения

В движении этих тел можно найти много различий. Например, шарик на нити (рис. 52, а) движется криволинейно, а цилиндр на резиновом шнуре (рис. 52, б) - прямолинейно; верхний конец линейки (рис. 52, в) колеблется с большим размахом, чем средняя точка струны (рис. 52, г). За одно и то же время одни тела могут совершать большее число колебаний, чем другие.

Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Повторяющимися будут и движения остальных тел, изображённых на рисунке 52.

Промежуток времени, через который движение повторяется, называется периодом колебаний. Поэтому говорят, что колебательное движение периодично.

В движении тел, изображённых на рисунке 52, кроме периодичности есть ещё одна общая черта: за промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

  • Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями

Именно такие колебания и будут предметом нашего изучения.

На рисунке 53 изображён шарик с отверстием, надетый на гладкую стальную струну и прикреплённый к пружине (другой конец которой прикреплён к вертикальной стойке). Шарик может свободно скользить по струне, т. е. силы трения настолько малы, что не оказывают существенного влияния на его движение. Когда шарик находится в точке О (рис. 53, а), пружина не деформирована (не растянута и не сжата), поэтому никакие силы в горизонтальном направлении на него не действуют. Точка О - положение равновесия шарика.

Рис. 53. Динамика свободных колебаний горизонтального пружинного маятника

Переместим шарик в точку В (рис. 53, б). Пружина при этом растянется, и в ней возникнет сила упругости F упрB . Эта сила пропорциональна смещению (т. е. отклонению шарика от положения равновесия) и направлена противоположно ему. Значит, при смещении шарика вправо действующая на него сила направлена влево, к положению равновесия.

Если отпустить шарик, то под действием силы упругости он начнёт ускоренно перемещаться влево, к точке О. Направление силы упругости и вызванного ею ускорения будет совпадать с направлением скорости шарика, поэтому по мере приближения шарика к точке О его скорость будет всё время возрастать. При этом сила упругости с уменьшением деформации пружины будет уменьшаться (рис. 53, в).

Напомним, что любое тело обладает свойством сохранять свою скорость, если на него не действуют силы или если равнодействующая сил равна нулю. Поэтому, дойдя до положения равновесия (рис. 53, г), где сила упругости станет равна нулю, шарик не остановится, а будет продолжать двигаться влево.

При его движении от точки О к точке А пружина будет сжиматься. В ней снова возникнет сила упругости, которая и в этом случае будет направлена к положению равновесия (рис. 53, д, е). Поскольку сила упругости направлена против скорости движения шарика, то она тормозит его движение. В результате в точке А шарик остановится. Сила упругости, направленная к точке О, будет продолжать действовать, поэтому шарик вновь придёт в движение и на участке АО его скорость будет возрастать (рис. 53, е, ж, з).

Движение шарика от точки О к точке В снова приведёт к растяжению пружины, вследствие чего опять возникнет сила упругости, направленная к положению равновесия и замедляющая движение шарика до полной его остановки (рис. 53, з, и, к). Таким образом, шарик совершит одно полное колебание. При этом в каждой точке его траектории (кроме точки О) на него будет действовать сила упругости пружины, направленная к положению равновесия.

Под действием силы, возвращающей тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эта сила возникла благодаря тому, что мы совершили работу по растяжению пружины, сообщив ей некоторый запас энергии. За счёт этой энергии и происходили колебания.

  • Колебания, происходящие только благодаря начальному запасу энергии, называются свободными колебаниями

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы. В рассмотренном примере в колебательную систему входят шарик, пружина и вертикальная стойка, к которой прикреплён левый конец пружины. В результате взаимодействия этих тел и возникает сила, возвращающая шарик к положению равновесия.

На рисунке 54 изображена колебательная система, состоящая из шарика, нити, штатива и Земли (Земля на рисунке не показана). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Рис. 54. Нитяной маятник

  • Системы тел, которые способны совершать свободные колебания, называются колебательными системами

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Колебательные системы - довольно широкое понятие, применимое к разнообразным явлениям.

Рассмотренные колебательные системы называются маятниками. Существует несколько типов маятников: нитяные (см. рис. 54), пружинные (см. рис. 53, 55) и т. д.

Рис. 55. Пружинный маятник

В общем случае

  • маятником называется твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси

Колебательное движение будем изучать на примере пружинного и нитяного маятников.

Вопросы

  1. Приведите примеры колебательных движений.
  2. Как вы понимаете утверждение о том, что колебательное движение периодично?
  3. Что называется механическими колебаниями?
  4. Пользуясь рисунком 53, объясните, почему по мере приближения шарика к точке О с любой стороны его скорость увеличивается, а по мере удаления от точки О в любую сторону скорость шарика уменьшается.
  5. Почему шарик не останавливается, дойдя до положения равновесия?
  6. Какие колебания называются свободными?
  7. Какие системы называются колебательными? Приведите примеры.

Упражнение 23


1. Движение называется колебательным, если при движении происходит частичная или полная повторяемость состояния системы по времени. Если значения физических величин, характеризующих данное колебательное движение, повторяются через равные промежутки времени, колебания называют периодическими.

2. Что такое период колебаний? Что такое частота колебаний? Какова связь между ними?

2. Периодом называют время, в течение которого совершается одно полное колебание. Частота колебаний - число колебаний в единицу времени. Частота колебаний обратно пропорциональна периоду колебаний.

3. Система колеблется с частотой 1 Гц. Чему равен период колебания?

4. В каких точках траектории колеблющегося тела скорость равна нулю? Ускорение равно нулю?

4. В точках максимального отклонения от положения равновесия скорость равна нулю. Ускорение равно нулю в точках равновесия.

5. Какие величины, характеризующие колебательное движение, изменяются периодически?

5. Скорость, ускорение и координата в колебательном движении изменяются периодически.

6. Что можно сказать о силе, которая должна действовать в колебательной системе, чтобы она совершала гармонические колебания?

6. Сила должна изменяться с течением времени по гармоническому закону. Эта сила должна быть пропорциональна смещению и направлена противоположно смещению к положению равновесия.

Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн . Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования.

Классификация

Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).

По используемому математическому аппарату

  • Нелинейные колебания

По периодичности

Так, периодические колебания определены следующим образом:

Периодическими функциями называются, как известно, такие функции f (t) {\displaystyle f(t)} , для которых можно указать некоторую величину τ {\displaystyle \tau } , так что f (t + τ) = f (t) {\displaystyle f(t+\tau)=f(t)} при любом значении аргумента t {\displaystyle t} . Андронов и соавт.

По физической природе

  • Механические (звук , вибрация)
  • Электромагнитные (свет , радиоволны , тепловые)
  • Смешанного типа - комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

  • Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса : резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
  • Свободные (или собственные) - это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
  • Автоколебания - колебания, при которых система имеет запас потенциальной энергии , расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.
  • Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

Параметры

Период колебаний T {\displaystyle T\,\!} и частота f {\displaystyle f\,\!} - обратные величины;

T = 1 f {\displaystyle T={\frac {1}{f}}\qquad \,\!} и f = 1 T {\displaystyle f={\frac {1}{T}}\,\!}

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота ω {\displaystyle \omega \,\!} (рад /с, Гц, с −1) , показывающая число колебаний за 2 π {\displaystyle 2\pi } единиц времени:

ω = 2 π T = 2 π f {\displaystyle \omega ={\frac {2\pi }{T}}=2\pi f\,\!}
  • Смещение - отклонение тела от положения равновесия. Обозначение Х, Единица измерения - метр.
  • Фаза колебаний - определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

Краткая история

Гармонические колебания были известны с XVII века.

Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем. Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» - т. е. с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, - что проявляло себя в первую очередь как отклонение от известной формулы Томсона . Тщательное историческое исследование показало , что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл », и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова .

Иностранные исследователи признают тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама , выпустившие в 1937 г. первую книгу , в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин "релаксационные колебания", предложенный ван дер Полем. Они предпочитали термин "разрывные движения", используемый Блонделем , в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов . Этот подход стал зрелым только в контексте теории сингулярных возмущений » .

Краткая характеристика основных типов колебательных систем

Линейные колебания

Важным типом колебаний являются гармонические колебания - колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье , любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в

Поделитесь с друзьями или сохраните для себя:

Загрузка...